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Abstract

The physical world is an enigma to a vast majority of the computing sys-
tems. Though this remains of little consequence for many applications, for
a growing number of systems from personal devices to manufacturing, a vi-
sual acclimation is an emerging and inherent requirement. In recent years,
the machine vision community has worked diligently to meet this growing
requirement and has created a new generation of devices and methodolo-
gies to provide computing platforms an acuity for 3D sensing. This work
provides a literature review of standalone and embedded sensors, amalga-
mating research with pertinence to 3D surface imaging using structured
light (SL). To provide context and insight into the future, the review sum-
marizes forerunner research and introduces 3D surface imaging as a candi-
date application which may benefit from a paradigm shift towards unified
machine and deep learning solutions.

1 Introduction

The physical world is an enigma to a vast majority of the computing systems. Though
this remains of little consequence for many applications, for a growing number of systems
from personal devices to manufacturing a visual acclimation is an emerging and inherent
requirement. The machine vision community has worked diligently to meet this growing
demand and in recent years has created a new generation of devices and methodologies to
provide 3D visual sensing.

Once prominent and popular devices such as the Microsoft Kinect [1] are now passé,
and are rapidly being replaced by specialized standalone and embedded sensors. As equiv-
alents, Intel has created the RealSense depth sensor family which includes stereo-vision,
stereo-infrared (IR), and LiDAR variants [2] with significantly improved capacities. Indus-
trial and commercial sensors are growing in popularity, with specialized devices available
from Zivid, Photoneo, Sony, Aeye, Basler, LMI, LUCID, Keyence and many others man-
ufacturers [3–10]. Sensors embedded in personal and portable devices are also becoming
more prominent, with mobile phones using depth mapping technology for applications from
biometric security to image segmentation [11, 12].

But the paradigm of computer vision is changing. Parameters and coefficients, once
manually tuned by an omniscient designer, are now a harrowing reminder of the circumstan-
tial environments and inherent bias with which they were conjured. Reliable and versatile
designs are now paramount in markets where industry and consumers alike are increas-
ingly intolerant of errors and malfunctions (for example the iPhone X release [13] and fears
of misidentification by government and law agencies [14, 15]). Machine Learning (ML)
provides an opportunity for a paradigm shift in computer vision through example-based
learning and discovery of data features and characteristics. Advances in computational



platforms now allow for the training and testing of models across previously unfathomable
stores of data. To this avail, companies such as Silicon Software offer integration services
for the embedding of deep learning machine vision solutions into FPGAs [16].

Methodologies and devices for Structured Light (SL) sensing of the physical world
are heavily driven by hand-designed features and prior knowledge injected by the designer.
Such designs operate with the presumption and prejudice of an omniscient creator, with
the implementation of a particular and potentially circumstantial solution. Through ML,
the potential exists to explore adaptive, abstract and alternative solutions across extensive
data, offering the potential for innovation in the encoding and decoding pipeline of SL
sensing. Though complete 3D sensing without occlusion is likely to remain unachievable
without multiple sensors and/or multi-spectrum analysis, the potential exists to create a
new generation of 3D surface sensors for projection mapping (dynamic & static) and 3D
surface measurement. By offering higher resolution, accuracy, refresh-rates, and versatility,
the sensors enable a multitude of different applications, including (but not limited to) part
inspection, self-driving vehicles, and augmented reality displays.

The following literature review is an amalgamation of research with pertinence to 3D
surface sensing using structured light (SL). Literature will summarize forerunner works
and research in structured light sensing, and introduce deep neural network (DNN) models
which could be integrated to create unified DNN & SL solutions. Where possible, sensing
methodologies implemented with ML are reported and emphasized.

2 3D Surface Imaging

Traditional cameras and image sensors sense the physical world as two-dimensional
(2D) planar images with implicit loss of three-dimensional (3D) depth information.
Through multitude of different techniques depth can be recovered using mono-, stereo-,
and multi-camera/sensor configurations. In its simplest of forms, the 3D representation of
a scene can be inferred from correspondences within the content of a scene, but it should
be emphasized that any recovery of 3D representation is partial.

3D surface imaging systems are design-oriented around measuring the (x, y, z)
coordinates of points on an object’s surface, creating point clouds of the form
Pi = (xi, yi, zi), i = 1, 2, ..., N . In this regard, no volumetric or internal structure data
is collected, and data is often best interpreted as a depth-map. For true 3D imaging and
the generation of data isomorphic to CAD models, the 3D representation of an object can
be recaptured through systems such as ultrasound, X-ray, Computed Tomography (CT) and
Magnetic Resonance Imaging (MRI), which capture volumetric pixels (voxels) and/or inter-
nal structure through transmissive probing (looking at what passes through an object rather
than what reflects).[17, 18]

Despite this limitation, 3D surface imaging systems can include capacities beyond
those of the aforementioned true 3D sensors, enabling augmentation of point-cloud data.
Simple versions of augmentation include the capacity to measure surface albedo (re-
flectance f ) and surface color (as scalar (ri, gi, bi) if using the RGB color model), pro-
ducing complex point clouds such as Pi = (xi, yi, zi, ri, gi, bi, fi), i = 1, 2, ..., N [17, 19].
Further extensions have been proposed by I.J.M, allowing for the recovery of perspec-
tive transformation coefficients of a projected pattern, creating points clouds of the form
Pi = (xi, yi, zi, χxi, ψxyi, τxi, χyi, ψyxi, τyi, χzi), i = 1, 2, ..., N [20].

The following subsections summarize methodologies and research in 3D surface
imaging. To improve coherence and better encompass the field, methods are broadly cat-
egorized as passive correspondence based (PCBV), active correspondence based vision
(ACBV), or other. For the purpose of this work, the focus and emphasis is on projector-
camera systems (PROCAM) operating in the visual light spectrum. Though empirically 3D
surfacing sensors can be created using a variety of different technologies, versatile and flex-
ible hardware platforms often offer cost-saving advantages to both consumer and industry
applications.
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2.1 Passive Correspondence Based Vision

As described by Luhmann et al. [21], a singular calibrated camera can be used to
create a 3D model by inferring the spatial correspondences created using a probing de-
vice. This is possible, given a calibrated camera has precisely known intrinsic and extrinsic
parameters, including the camera’s principle point, image plane, and radial distortion, al-
lowing for mono- and stereoscopic measuring of discrete points (see Figure 1 for reference)
[22]. Calibration parameters are known constants in metric cameras used in photogram-
metry, but conventional non-metric cameras can be manually calibrated using a reference
field (such as a chessboard) and methodologies such as Zhang’s method [23]. To quantize
the physical space in the scene of a singular image, probing devices must be used to create
correspondence points with known positions and orientations in 3D space. These corre-
spondences create triangles allowing for the solving of metric-depth by geometric proper-
ties, enabling a broad field of methods often referred to in literature as triangulation-based
methods.

Figure 1: Pinhole Camera [24]
Though precise, the requirement for a physical probing device to create spatial corre-

spondences is impractical and prohibitive for applications such as automation. Methodolo-
gies which infer correspondences directly from a scene are preferable and can be achieved
through a multitude of approaches. When using a singular camera, the depth information in
a scene is lost when a 3D structure is captured as a 2D retinal plane, but can be recovered
from correspondences created using an aforementioned probing device, or, structure from
motion. When using two or more cameras together in a stereo- or multi-camera config-
uration, the 3D representation of a scene can be recovered by referencing the 2D retinal
planes against each other to identify correspondences [25]. The configuration of stereo-
scopic methods is analogous to those illustrated in Figure 2 through cameras C and C ′ with
respective image planes I and I ′.
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Figure 1: Epipolar geometry between a pair of images.

The fundamental matrix is a rank-2 matrix that maps points in to lines in , and points
in to lines in . That is, if is a point in then is an epipolar line in since from
Eq. (1), . In fact, any point that corresponds with must line on the epipolar line .

For a fundamental matrix there exists a pair of unique points and such that

(2)

where is the zero vector. The points and are known as the epipoles of images and
respectively. The epipoles have the property that all epipolar lines in pass through , similarly all

epipolar lines in pass through .
In 3D space, and are the intersections of the line with the planes containing image and

. The set of planes containing the line are called epipolar planes. Any 3D point not on line
will define an epipolar plane, the intersection of this epipolar plane with the plane containing

or will result in an epipolar line (see Figure 1).
In this paper, we assume that is known. An overview of techniques to find can be found

in [5]. If the intrinsic parameters of a camera are known, we say the images are calibrated, and
the fundamental matrix becomes the essential matrix [1]. Our method of rectification is suitable for
calibrated or uncalibrated images pairs, provided that is known between them.

3 Rectification

Image rectification can be view as the process of transforming the epipolar geometry of a pair of
images into a canonical form. This is accomplished by applying a homography to each image that
maps the epipole to a predetermined point. We follow the convention that this point be
(a point at ), and that the fundamental matrix for a rectified image pair be defined

We use the notation to denote the antisymetric matrix representing the cross product with .
Under these conventions, it is easy to verify that rectified images have the following two properties:

3

Figure 2: Epipolar Geometry

To accurately reconstruct the 3D rep-
resentation of a surface, many factors need
to be taken into consideration including the
vergence (angle between C and C ′) and
baseline (distance between C and C ′), but
also the characteristics of the scene. Given
structure from motion and the referencing
of 2D retinal planes rely on scene content
for correspondences, unfavorable morphol-
ogy and surfaces exhibiting limited (or de-
void of) texture are problematic [26]. Fur-
thermore, as illustrated by the stereoscopic
image pair in Figure 3a, identifying corre-
spondences between 2D retinal planes can
be a complex task.
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(a) Original image
pair overlayed with
several epipolar
lines.

(b) Image pair
transformed by the
specialized projec-
tive mapping
and . Note that
the epipolar lines
are now parallel to
each other in each
image.

(c) Image pair
transformed by
the similarity
and . Note
that the image pair
is now rectified
(the epipolar lines
are horizontally
aligned).

(d) Final image
rectification after
shearing transform

and . Note
that the image pair
remains rectified,
but the horizon-
tal distortion is
reduced.

Figure 3: An example showing various stages of the proposed rectification algorithm.
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(b) Corrected

Figure 3: Rectifying Homography [27]

Numerous approaches have been proposed to reduce the complexity and computa-
tional expense of stereoscopic image analysis, including Relative Stereo Disparity (RSD)
[25] and phase-based algorithms [28]. With relevance to recent works in ACBV in Sub-
section 2.2, Loop and Zhang’s method of rectifying homographies is of particular interest.
As illustrated through Figure 3a, lens calibration can be used to independently rectify im-
age planes for radial and tangential distortion. This ‘flattens’ the image planes, but does
not converge the images to a common viewpoint and therefore correspondence searches
along epipolar lines follow skew lines in image space. Taking advantage of known epipolar
constraints (as shown Figure 2), Loop and Zhang proposed the application of rectifying ho-
mographies, allowing for epipolar lines to be parallel and aligned with the coordinate axis
[27]. This is illustrated in Figure 3, where a rectifying homography has been applied to
the images in Figure 3a to produce the images in Figure 3b with epipolar lines aligned to
the horizontal axis. Stereoscopic analysis of Figure 3b is thus simplified, as in the absence
of skewing, disparity is a measure of displacement along a 1D epipolar scan-line. The ap-
proach used by Loop and Zhang to produce the rectifying homography is by decomposing
each homography into a specialized projective, similarity and shearing transform. This pro-
cess is prone to erroneous results in part due to the accounting for distortion through forced
affine qualities on homographies [29]. Mallon and Whelan improved on this approach,
proposing inference of the rectifying homography from fundamental matrices and taking
into consideration more than one localized region of an image. This proposed improvement
exhibits a rectification accuracy equal to the error in the fundamental matrix estimation
[29].

Though older at this stage of evolution in 3D surface imaging sensors, passive cor-
respondence based vision systems (PCBV) have not lost their prominence in industry and
consumer products. PCBV systems are versatile and can be tailored to provide accurate
real-time operation on limited hardware [25][28]. As a result, PCBV systems are afford-
able and convenient solutions, persisting today through products such as the PlayStation
Camera, enabling tracking for hands-free system navigation and facial recognition for auto-
login on PS4 [30].

2.2 Active Correspondence Based Vision

Active Correspondence Based Vision (ACBV) methods are often analogous to their
passive counterparts, exhibiting similar operating characteristics and limitations. In con-
trast to passive methods, ACBV mitigates dependence on correspondences scene content
by actively projecting spatial or spatiotemporal patterns by modeling projectors as inverse
cameras. As a benefit of this close relationship, the calibration of ACBV sensors generally
mirrors that of previously mentioned PCBV sensors. The following subsections summarize
approaches structured light to 3D surface imaging and the characteristics which enable their
imperceptible operation.

2.2.1 Structured Light

Structured light is the active illumination of a scene with specially designed spatially
and/or temporally varying intensity patterns. Though active illumination is often synony-
mous with projection, it is important to dissociate projection from the intuitively insinuated
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consumer projector technology. As demonstrated by many proposed sensors and consumer
products, projection can be achieved in ways other than the presupposed LCD, DLP or
LED projector technology. For example, the Kinect V1 uses a IR laser shone through a
diffraction grating to project a set of static IR dots on a scene [1]. In terms of a more rad-
ical design, Radu et al. propose using a catadioptric camera to sense lines emitted by an
omnidirectional laser source to sense depth over a much wider field of view [31].

Figure 4: c©2011 Optical Society of America [17]
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As illustrated in Figure 4 by Geng [17], active illumination can be achieved through
a multitude of approaches which can be broadly classified into a number of pattern fam-
ilies. These include grid (M-array), stripe, continuous and coded patterns, which can be
discretely, spatially and/or temporally multiplexed. Despite the variety in approaches, no
family of patterns is indicative of an optimal depth sensor and each family offers varied
density of recovered depth points, ability to handle moving subjects, and computational ef-
ficiency. As such, families of patterns can be mixed to create hybrid approaches which draw
on the strengths of each pattern family. Differences between pattern types is exemplified
by Salvi et al. in Figure 5, where patterns for profilometry are further categorized as either
discrete or continuous [26]. As illustrated, Salvi et al. compiled a table summarizing works
from 1982 to 2009, including methodology characteristics, including:

• Shots: Number of patterns necessary to profile a surface
• Cameras: Number of cameras required by the methodology
• Axis: Number of axes referenced in pattern generation
• Pixel Depth: Binary(B), grayscale (G), or Color(C) pixel representation
• Coding Strategy: Periodic (P) or absolute (A) pattern positioning
• Subpixel acc.: Precision level as either sub-pixel (Y) or meta-pixel (N) accuracy
• Color: Support for textured objects (Y) or surfaces devoid of texture (N)

Some difference may be noted between illustrations of structured light techniques,
including the portrayal of phase shift as a multi-shot technique in Figure 4 and as a single-
or multi-shot technique in Figure 5. The categorization by Salvi et al. is correct, as multi-
phase patterns are often multi-shot, yet single-shot phase-shifting and solid-state fringe
patterns have been previously described in many works. This includes the fringe pattern
proposed by Gong and Zhang to achieve very high depth frame rates [32]. In a broader
sense, what is illustrated by the differences in classification between the two figures is the
lack of universal truths, where spatial and/or temporal patterns are often designed to meet
specific operating characteristics. This phenominon is illustrated in Figure 5, where the
characteristics exhibited by proposed sensors have little correlation to pattern classification.
As such, patterns do not necessarily conform to any fixed categorization and, along with
the sensors they enable, are not easily compared or benchmarked against one another. This
is will be discussed further in a later section.

Though seldomly comparable, there are a number of design characteristics which
should be observed in ACBV sensors. Depending on the desired precision, throughput,
and hardware-costs, selections can be made to increase performance. In terms of maximiz-
ing precision, pattern selection should prioritize spatial multiplexed, continuous and other
patterns which maximize usage of the spectrum (color, if using an RGB projector) and offer
the capacity for sub-pixel precision in depth measurements. Inversely, throughput is maxi-
mized by selecting patterns requiring minimal processing, thus monochrome single-camera
with simple patterns such as grid (M-array), stripe, binary and others with correspondences
searches along a singular axis. Alternatively if hardware costs are to be minimized, se-
lection should be inline with maximized throughput though prioritizing solely single-shot
patterns such that projection can be performed by a static mechanical emitter.

These design characteristics are not universal truths and as such there are a number
of weaknesses to ACBV which designers should be aware of. Much like any flashlight,
structured light 3D imaging systems have limited energy in projection [17]. As such, ACBV
sensors can only sense the physical world touched by projections with sufficient intensity. In
time-of-flight (ToF) sensors, sensor range can be scaled by controlling emitter intensity, but
no such varied-intensity ACBV sensor is known to have been successfully demonstrated.
In addition to challenges with distance, most ACBV sensors are sensitive to textured and
specular surfaces to a varying degree. Though radiometry can be applied to static scenes,
no successful solution is know to be have been demonstrated for dynamic scenery. As
observed by Li et al., projector positioning greatly influences performance including clarity
and illumination [33]. This also inherent to the parallax in triangulation-based 3D surface
imaging, where 3D surface features can be occluded due to perspective [17]. Though this
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Figure 5: Structured Light Classification by Salvi et al. [26]
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parallax can be mitigated by incorporating multiple cameras and emitters, most ACBV
sensors are incompatible with multiple overlapping projection sources.

As previously mentioned, the calibration of ACBV sensors mirrors that of traditional
PCBV, though the process can be less sympathetic. Autofocus has been implemented in
cameras since 1977 with the first 35mm SLR in 1981 [34] and yet, despite it existing,
off-the-shelf projectors seldomly offer the sensory hardware necessary for self-calibration.
The cameras and projectors in ACBV sensors often achieve the required acclimation for
calibration through the intervention of a human expert, but today’s requirement for preci-
sion, versatility, and dynamic operation often make that incompatible. As such, commercial
and industrial ACBV sensors such as the Intel RealSense and Zivid One come with fused
optics, controlling only minimal hardware characteristics such as exposure and aperture
[2, 19]. Overcoming fixed orientation is an active area of research, with examples of dy-
namic self-calibration and its enabling characteristics for robotics explored by Wieghardt
and Wagner [35].

For a curated list of commercially available state-of-the-art including ACBV systems,
Vision Systems Design publishes an annual ranking of disparate and innovative technolo-
gies, products, and systems found in machine vision and imaging [10]. This publication is
a thorough and comprehensive list of technologies commercially available to industry on a
global perspective, providing great insight into emerging trends in 3D surface imaging and
machine vision.

2.2.2 Imperceptible Structured Light

ACBV sensors operating in industrial settings often require unrestricted and uncom-
promised use of the illuminated spectrum to sustain desired precision, resolution and frame
rates [19]. In the theater of an office or living room, such operation is hindering and pro-
hibitive of user experience with Augmented Reality (AR) and other applications. To over-
come this limitation, ACBV sensors have been adapted to offer imperceptible operation by
increasing operating speeds and projecting in spectrums which exceed the range of human
perception.

As demonstrated by consumer products such as the Kinect V1 and RealSense D435,
a convenient approach to imperceptibility is shifting operation from the visible spectrum to
alternatives such as the infrared (IR) spectrum [1, 36]. Operating at a wavelengths beyond
human capacity, IR operation offers some significant advantages over sensors operating
in visible light. Imperceptibility aside, IR sensors are insensitive to ambient lighting and
textured surfaces as a result of artificial light containing limited IR radiation and few indoor
textures being IR reflective [1, 37, 38]. As described by Laudau et al., IR sensors suffer
from drawbacks with specular surfaces similarly to most depth sensors. In this scenario,
reflecting light results in erroneous depth information, effectively ‘washing out’ texture and
structured light [39]. Though there is no exclusivity to the IR spectrum, examples of ACBV
sensors in alternate spectrums are predominantly IR.

Operation in the IR is both an advantage and a drawback. In terms of hardware, visible
light sensors offer versatility to AR systems where, in addition to sensing, hardware can dis-
play and capture video for human consumption. Therefore, it can be said that visible light
sensors offer reduced hardware costs for AR systems, whereas systems using IR sensors
(such as the Kinect) would require additional hardware for displaying and capturing con-
tent [1]. That being said, though not all visible light sensors can sense imperceptibly whilst
simultaneously displaying content, all PROCAM hardware inherently offers this dual func-
tionality. As an example of this, iLamps projects a chessboard to calibrate before projecting
digital content for user consumption [40].

To retain this dual functionality in the visible spectrum, alternative modes of opera-
tion have been proposed using high-speed projection, dithering, and flicker fusion, which
modulate light faster than perceivable by human psychophysical responses. To achieve this,
a threshold is necessary for maximum human capacity to interpret visual stimuli. In 2007
Kuroki et al. performed a psychophysical study on motion-image quality, finding that blur
and jerkiness from motion were no longer perceptible at frame rates upwards of 250 fps
[41]. This is impractical, as standard cinema video operates at 24 fps and most off-the-shelf
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projectors have a refresh rate between 30fps and 180fps. Furthermore, high-contrast pat-
terns can be visible to human observers at greater than 60Hz, resulting in visual stress and
distraction [42]. As a result, most works employ flicker fusion techniques which can have
low contrast and lower operating frequencies.

Equation 2.1 Flicker Fusion [43]

I+1 = I + ∆Pattern (2.0.1)

I−2 = I −∆Pattern (2.0.2)

As shown in Equation 2.1, flicker fusion works by decomposing an image I into com-
plementary images I+ and I− injected with a weighted (∆) pattern. When the images are
projected in sequence at a high frequency, the images aggregate and the human observer
perceives the unaltered image I [43]. Though flicker fusion has been demonstrated as a
method, there remains incongruities between works with the minimum operating frequency
and maximum pattern weights. For example, some works ([44, 45]) cite Raskar et al. [46]
and target aggregated uniformity in projection at 60Hz, while others ([43, 45]) cite Park et
al. for critical fusion frequency at >75Hz [47]. That being said, it should be noted that
Raskar et al. provide no citation or validation, and Park et al. made an error in their ci-
tations, though the apparent citation of a 1986 manual on human physiology by Andrew
Watson contains no mention of ‘critical fusion frequency’ or 75Hz [48].

Using the same principle as flicker fusion, dithering was proposed in 2004 by Cotting
et al. to take advantage of digital mirroring devices (DMD) core to DLP projector tech-
nology [44]. By controlling the flipping of DMD micro-mirrors, Cottin et al. proposed
modulating patterns into the DLP’s aggregated rendering pipeline, enabling encoding with
no discernible impact on visualized content. Though limited by the technology available in
2004 and unable to demonstrate the full potential of the concept, Cotting et al. embedded
reflected binary codes (RBC) within an image with a reduced dynamic color range. This
successfully embedded the patterns imperceptibly but degraded the visual quality of pro-
jected media. DLP technology remains an active area of interest for hardware ‘tricks’, with
recent works such as Cole et al. taking similar advantage of the DLP hardware to project
three patterns per visualized frame by recognizing the DLP projector color-wheel frequency
[45].

2.3 Other Methodologies

Given the impracticality of correspondences based vision in environments with un-
favorable scene content, alternative approaches mitigating the requirement for geometric
congruity have been sought. Though not all are common or known to be commercially
available, alternative approaches have been proposed for 3D surface imaging using moving
optics, plenoptics cameras and time-of-flight devices.

Moving Lenses: Approaches to depth sensing using moving lenses is an interesting and
emerging area of research. In 2015, Amin and Riza introduced a system capable of recon-
structing depth by using an electronically controlled lens to vary focal length [49]. This
proposed system used a laser source and was compared to a standard 1024x768 Philip’s
LC4345 3LCD projector with its focus fixed to 56.8cm from the camera. Over a depth of
30cm to 100cm, Amin and Riza found their approach estimated depth with 6%-10% error
in comparison to 10%-40% error with the conventional projector. A similar methodology
was proposed by Iwai et al. in 2015, placing an electronically controllable lens in front
of a 3LCD Epson EMP-1710 1024x768 projector and capturing the result with a 10.1MP
Cannon EOS Rebel XTi [50]. This approach produced a mean depth difference of 0.21mm
in comparison to a 0.26mm mean depth difference from the same configuration with fixed
optics and grey-code patterns.

Plenoptic Lenses: Plenoptic cameras (or light-field cameras) are a niche and possibly re-
emerging area of research [18, 49]. Introduced by Adelson and Wang in 1992 as a means
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of achieving ‘single lens stereo’, plenoptic lenses have a unique conoidal structures which
create a parallax and allow for the simultaneous capture of multiple viewpoints [51]. The
traditional design of plenoptic lenses creates a defocused array of images with as few as one
in-focus pixel, which is greatly impractical. As a result, this design was improved in 2009
by Lumsdaine and Georgiev to enable the capture high resolution images alongside other
applications [18, 52]. As noted by Amin and Riza, one specialized function of plenoptic
cameras is the capacity for the degree of focus/defocus to be measured for axially separated
objects from a single image [49]. This provides an aptitude for autofocus exceeding SLR
cameras [34].

Time-of-Flight: Time-of-flight (ToF) technology is an alternative approach to 3D surface
imaging with predominance in outdoor consumer and industrial settings, but emerging re-
cently as a viable sensors for indoor consumer applications. With that in mind, Intel just
released the RealSense LiDAR L515, offering up to a 1024x768 depth resolution over a
range of 0.25m to 9m at 30FPS (23.6 million depth points per second)[2].

ToF devices function by illuminating a scene with a modulated light source and in-
ferring depth from analysis of reflected light. This can be achieved through pulsed or
continuous-wave signal modulation though, given light travels as 3∗108m/s, 1mm precision
would require the generation of impractical 6.6 picosecond pulses. As a result, continuous-
wave signal modulation is favorable, with multi-frequency modulation necessary to sus-
tain disambiguated operation at high frequencies. ToF devices offer many advantages over
ACBV sensors, including an invariance to scene morphology and a capacity to control sen-
sor range through active control over illumination energy. As a result, where stereo-vision
sensors experience a depth resolution error as a quadratic function of increasing distance,
ToF sensors can offer scalable range by controlling illumination and using the reflected
intensity as a measure of confidence. These operating characteristics and others are com-
pared to stereo-vision and structured light as illustrated in Figure 6. One known drawback
of ToF design is that frequency is inversely proportional to sensing distance. As such, low
frequencies can be used for long-range scanning, but high frequencies (and thus fast elec-
tronics) are necessary for short-range applications such as indoor use. This relationship can
be cost-prohibitive, and is likely correlated to the late emergence of commercially available
ToF devices for consumer applications. [53]

 Technical White Paper 
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Figure 6: Comparison of 3D Imaging Technologies. Copyright c© 2014, Texas Instruments
Incorporated [53]

Discussion: As noted by Amin and Reza, measurements using moving and plenoptic
lenses are dependent on scene morphology and lighting for successful operation [49]. As
a result, moving and plenoptic lenses are unlikely to replace ACBV sensors in the near
future. ToF devices on the other hand are rapidly growing in popularity and decreasing in
price. The technology is also important to mention as the operating speeds of projector
technology increases, as someday soon it may offer the capacity to modulate light for ToF
devices. More specifically, DMD dithering on DLP projectors as proposed by Cotting and
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Fuchs could potentially be used to modulate a signal to enable a ToF device, creating an
unprecedented high-speed and high-resolution 3D surface imaging sensor [44].

2.4 Performance Assessment & Qualitative Metrics

Throughout the works perused, a variety of different metrics have been reported to
characterize and quantize the operating performance of proposed systems. For the purposes
of qualitative assessment and comparison, uniformity and conformity in reported metrics is
a desirable quality. Idealistic as that concept may be, the metrics commonly reported for
proposed 3D surface imaging sensors often have heavy bias towards hardware and are poor
measures of a methodology’s performance.

Performance Assessment: Performance of proposed systems is frequently quantized as a
measure of throughput in recoverable depth Points Per Second (PPS) as expressed in Equa-
tion 2.2.1. Drawing for optical communication, this is reflective of the baud rate (symbol
rate) as expressed through Equation 2.1.1 [54].

Equation 2.2 Optical Communication Quality Assessment
Baud Rate (Symbol rate):

Bd = Bits ∗ Channels ∗OperatingFrequency (2.1.1)

Spectral Efficiency:

SpectralEfficiency(
bps

Hz
) =

ChannelThroughput(bps)

ChannelBandwidth(Hz)
(2.1.2)

Though PPS and Baud metrics provide insight into speed of operation, there is an in-
herent reflection of hardware operation and misrepresentation of methodology performance.
Specifically, there is a bias towards works using platforms with higher computational per-
formance, higher resolution optics and support for higher framerates. Drawing again from
optical communication to provide clarity, spectral efficiency as expressed in Equation 2.1.2
is a metric used to quantize the rate at which information can be transmitted over a given
bandwidth [55]. This metric can be adapted to represent density of points as shown in
Equation 2.2.2.

Equation 2.3 Optical Communication Quality Assessment
Points Per Second (PPS):

PPS = Correspondences ∗ Channels ∗ framerate (2.2.1)

Point Density:

PointDensity(
PPS

M ∗N ∗ Channels
) =

ChannelThroughput(bps)

ChannelBandwidth(Hz)
(2.2.2)

As a measure of consistency and accuracy in the operation of proposed systems, many
works make use of plane-fitting. Using this technique, the proposed system is used to
iteratively collect a point cloud of an ideal (likely lambertian) planar surface set at a variable
depths. Once collected, a plane is fit to each point cloud and error is estimated as measure
of point conformity to the plane. As an example, Fanello et al. compare five approaches to
depth mapping by calculating the Root Mean Squared Error (RMSE) from plane fittings in
a uniform environment and planes 20-350cm from the sensors [56]

Plane fitting provides insight into a proposed system’s capacity to operate with sur-
faces at varying depths of field, but is not without bias. Inherent to the metric, it should be
acknowledged that a multitude of methods exist for fitting a plane and none are impervi-
ous to subjectivity or is reflective of a ground-truth. In the case of RANSAC approaches,
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the produced plane is greatly dependent on the consensus set size, data set (point-cloud)
size, and search iterations [57]. If presented independently, any measure of error is strongly
reflective of the optics and therefore metric error (mm, cm and etc) can be controlled in ex-
perimentation by choosing favorable optics and depths for the planar surface. Furthermore,
plane-fitting is subjective of the planar surface, and is therefore ignorant of the sensor’s
capacity to handle surface discontinuity. This is a known issue with continuous structured
light methods, and therefore it is possible for a sensor to achieve low error in plane-fitting
and yet be incapable of generating a coherent point cloud for an object with a jagged surface
such as a mechanical keyboard [17]. To overcome this limitation, works have elected to re-
port supplementary fittings to non-planar surfaces. One example of such is the reporting of
point cloud error and standard deviation for a cylindrical green tea can by Dai and Chung
[43].

Qualitative Metrics: Assessing and measuring the quality of an imperceptible 3D sur-
face sensor is a difficult task, for as previously discussed, there is little consensus in terms
of what qualifies as imperceptible. Some works elect to validate by performing human
studies, but this can be a challenging and subject to large amounts of bias. As discussed by
Kuroki et al., human perception is impacted by viewing distance and angle, but also content
resolution, contrast and color [41]. This is without mentioning physiological differences in
visual acuity between different age groups, genders and other genetic dispositions.

As an alternative to visual inspection, system performance can be assessed through
quantitative metrics applied to image pairs through measures such as MSE, PSNR, and
SSIM. Each of these metrics, defined in Equation set 2.4, quantitatively expresses differ-
ent measures of change in an image pair. By comparing the unaltered image projection
to a captured flicker fusion image over known exposure (16.6ms for 60Hz), such metrics
ascertain the integrity of projection.

Equation 2.4 Qualitative Metrics MSE [58], PSNR [59], and SSIM [60][61]

Mean Squared Error (MSE):

MSE =
1

M ∗N ∗D

M∑
x=0

N∑
y=0

(ISample(x, y)− IRef (x, y))2 (2.3.1)

Peak Signal-to-Noise Ratio (PSNR):

PSNR = 10 ∗ log10(η2/MSE) (2.3.2)

Structural Similarity Index (SSIM):

SSIM(ISample, IRef ) =
(2 ∗ µISample

∗ µIRef
+ (0.01 ∗ η)2)(ζISample,IRef

+ (0.03 ∗ η)2)

(µ2ISample
+ µ2IRef

+ (0.01 ∗ η)2)(ζ2ISample
+ ζ2IRef

+ (0.03 ∗ η)2)

(2.3.3)

The MSE, as shown in Equation 2.3.1, provides a simple measure of differences
between two images. The measure quantitatively expresses the difference as the sum of
squared differences between the pixels of a sample image ISample and a reference image
IRef . The equation normalizes the quantitative measure by dividing the result by the image
size M ∗N ∗D (or, in laymen terms, columns ∗ rows ∗ depth).

PSNR extends on MSE by expressing quantitatively measured noise as ratio in deci-
bels. As shown in Equation 2.3.2, PSNR is a logarithmic representation of MSE which
takes into account the peak signal value η. The value of η is respective of the image data
type, where for an image composed of unsigned chars, η would equal 255.

SSIM provides a unique measure quantizing changes in image luminescence, contrast,
and structure between a sample image ISample and a reference image IRef [61]. This metric
is defined in Equation 2.3.3, where SSIM is calculated using the mean (µ), cross-covariance
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(ζ) and data type maximums (eta) of the images. Though expressed in Equation 2.3.3 as
a singular metric, MathWorks notes that SSIM is separable into individual measures of
change in luminescence, contrast and structure [60]. This is achieved, respectively, by
quantizing the difference in image local means, standard deviations and cross-covariance.
Equation 2.3.3 for SSIM is prominent in image processing qualitative metrics reporting,
though it should be noted that alternative methodologies of measuring image structural
similarity exist (such as Complex wavelet structural similarity by Sampat et al. [62]).

Comparing Methodologies: Despite these metrics, comparing methodologies is a sur-
prisingly difficult task. To demonstrate, Table 1 illustrates the broad characteristics of re-
cently proposed sensors by Qiu et al. [63] and Cole et al. [45], alongside proposed sensors
from the past decade consisting of an M-Array approach by Dai and Chung [43] and a
fringe pattern approach by Gong and Zhang [32]. Of these methods, the DLP projected
grey-codes by Cole et al. and flicker fusion approach by Dai and Chung are imperceptible
techniques.

Table 1: Proposed PROCAM Surface Imaging Sensors
CPU Projector Depth Resolution

Qiu et al. [63] Intel i9 7920X 2.9GHz 1280x800@30Hz 1280x800†

Cole et al. [45] AMD Ryzen 5 1600MHz 1920x1080@200Hz (DLP) 1400x256
Dai and Chung [43] Intel i5-760 2.8 GHz 1024x768@120Hz 68x51

Gong and Zhang [32] Unknown* 858x600@60Hz (DLP) 480x480

Table 2 was completed by calculating Points per Depth Frame (DFP), Points per Pro-
jector Frame (FP) and Point Density in Projector Frame (FPD) using the reported metrics
from each paper and three commercially available IR sensors. As denoted by asterisks (∗),
operation specifics of the commercial products could not be found and were assumed to
be single-shot. This assumption is presumably correct for the Kinect V1 and RealSense
which are known to have static IR projection [1] [36, p. 54]. As denoted by a star (?), the
RealSense D435 can operate at 30fps for 1280x720 resolution or at 90fps for 848x480 res-
olution [36, p. 54]. This alternate mode of operation at 90 fps represents 36.6M PPS and
407,040 points per frame (PPF). It should be noted that after closer analysis it would appear
that Qiu et al. may have incorrectly reported the depth resolution of their proposed sensor
as 1280x800. The highest resolution reported in experimentation is 5x863, collecting 4,315
points per frame via dual pattern subtraction.

Table 2: Depth Metrics of Proposed PROCAM Surface Imaging Sensors.
Resolution FPS Shots PPS DFP FP FPD

Kinect V1 [64, 65] 320x240 30 1* 2.3M 76,800 76,800* 1.0*
Kinect V2 [64, 65] 512x424 30 1* 6.5M 217,088 217,088* 1.0*

RealSense D435 [2, 36] 1280 x 720 90? 1* 27.6M 921,600 921,600* 1.0*
Qiu et al. [63] 1280x800† 2,720‡ 1 11.7M‡ 4,315 4,315 0.004

Cole et al. [45] 1400x256 22.2 9 7.96M 358,400 39,822 0.019
Dai and Chung [43] 68x51 60 2 208,080 3,468 1,734 0.0022

Gong and Zhang [32] 480x480 4k 1 921.6M 230,400 230,400 1.0

Points Per Second (PPS), Depth Frame Points (DFP), Frame Points (FP), Frame Point Density (FPD)
*=missing, ?=conditional, †=wrong, ‡=theoretical

From reported measures of PPS, the proposed sensor by Gong and Zhang outperforms
all with the achievement of 921.6M pps. This is due to its 4,000fps camera which allowed
for depth sensing on moving fan blades. Isolating operation to a single depth frame, it can
be seen that the RealSense D435 has 4x more points per depth frame (DFP). After camera
isolation, Qiu et al.’s dependence on camera frame rate is shown, reflecting a 0.004 density
of depth points per projected frame (FPD). Dai and Chung’s approach produces a lower FP
and FPD, but uses flicker fusion for imperceptibility which effectively halves the projection
rate from 120Hz to 60Hz. If the same approach was followed using visible artifacts, it is
presumable that Dai and Chung’s approach would achieve 3,468 FP and a 0.0044 FPD. As
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denoted by daggers (‡), it is worth mentioning performance reported by Qiu et al. is the-
oretical, deriving frame rate (2720 fps) and PPS (11.7M) solely from computational time.
This is unprecedented, with no reported metrics or hardware specification for a prototype
system. In contrast, Gong and Zhang provide a detailed report of the operation of a pro-
totype sensor and only in conclusion discuss the theoretical limits of operation. As such,
Gong and Zhang discuss how modifying active projection of the proposed sensor could in-
crease operating speed up to 12,500Hz by either lowering projector resolution or replacing
it with a mechanical grating. On another note, the hardware used for analysis of compu-
tational time by Qiu et al. is near state-of-the art consumer hardware, with the reported i9
processor offering a 263% higher 8-core benchmark score than the i5 reported by Dai and
Chung [66]. As such, the claim that increased bandwidth is achievable by further hardware
optimization is quite arguable, particularly in an academic setting. As suggested by the
metrics reported in Table 2, the operating bottleneck appears to lie in the sparse projected
pattern, which could be replaced by a continuous fringe pattern to dramatically increase
point density (FPD). It should be further mentioned that Qiu et al.’s account of the metrics
and operation of the RealSense D435 is inaccurate.

The metrics in Table 2 emphasize the desirability for higher data throughput at the
lowest possible operating frequency. As a general observation, these characteristics enable
the lower hardware costs of commercially available products, disfavoring multi-shot ap-
proaches. This is exemplified by the 9-pattern approach used by Cole et al. which exhibits
a low FPD and a lower FP than the Kinect V1. These metrics belie the added capacity of-
fered by the proposed system, which takes advantage of DLP technology. Cole et al. were
able to project three patterns per aggregated frame, achieving an effective pattern projection
rate of 200Hz to collect depth at 22.2Hz while simultaneously maintaining coherent media
projection at 66Hz. This gives the proposed sensors capacities beyond the Kinects and Re-
alSense, though there is a significant lack of evidence to support this claim. The work by
Cole et al. claim an ‘empirical’ measurement of imperceptibility from showing one singular
static image to ten people [45]. Though derived mathematically, no qualitative or quantita-
tive measurements are reported to support successful implementation. In contrast, Dai and
Chung validated through experimentation using 500 random images with varied encoding
intensities being ranked quantitatively by ten subjects of known demographics seated 1m
away [43].

Understanding performance and qualitative metrics commonly reported for 3D sur-
face imaging sensors is important to correctly interpreting reported results. As discussed in
this section, many of the commonly reported metrics have inherent bias towards hardware
and circumstance. Unfortunately, due to a lack of conformity, it is often up to the reader to
interpret the meaning of reported results. It should be noted that all the metrics are gener-
ally performed in ideal environments, projecting on lambertian planar surfaces. None take
into account environmental factors such as external sources of light, surface characteristics
such as albedo, or hardware cost. As such, using the metrics above, comparing proposed
PROCAM 3D surface imaging sensors or assessing their aptitude for a specific task is often
futile.

2.4.1 Discussion

There are advantages to each 3D surface imaging approach, but as discussed in the
previous section, differentiating between methods to select the best approach for a spe-
cific operating environment can be a complex task. Passive Correspondence Based Vision
(PCBV) offers a versatile and inexpensive approach, but depth is dependent on disparity in
correspondences which may or may not exist in scene morphology. Active Correspondence
Based Vision (ACBV) methods work on the same triangulation principle but offer some in-
variance to surface morphology by actively projecting correspondence through visible light
or an alternative spectrum (e.g IR). Such sensors are currently predominant in the consumer
market, with imperceptible variations offering increased hardware versatility to accommo-
date multi-media projection. Such methods are diverse in approach, but it should be noted
that multi-shot (coded or continuous) approaches are subject to motion blur in depthmaps
and lower frame rates. Alternatives to triangulation-based 3D vision based on physical
properties of light (such as ToF) mitigate the inherent parallax of multi-sensor systems and
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offer the greatest invarience to scene morphology. As the cost of such sensors continues to
decrease, it is quite likely that such sensors will continue to gain popularity and encroach
on ACBV market share.

3 Machine & Deep Learning

In recent years, machine learning (ML) and deep learning (DL) have become incum-
bent tools rapidly being adopted into every field of science and engineering imaginable.
This recent interest and adoption is paradoxically, given deep learning is considered a new
and emerging field yet has roots almost a century old. As discussed by Ian Goodfellow,
Deep Learning has had many names, starting with cybernetics in the 1940-60s, connection-
ism in the 1980-90s and finally deep learning in 2006 [67]. The adoption of ML and DL
today is a reflection the present day, where for the first time history the necessary computa-
tional resources and datasets are available to sustain training and viable operation of models
for a wide range of applications [67, 68]. As such, this is a pivotal moment in time where
the paradigm of machine vision has changed and, arguably, been turned upside down by
ML and DL.

Though today’s largest neural networks have fewer neurons than a frog, the achieve-
ments that have been possible through ML and Deep Neural Networks (DNNs) is consider-
able [67]. As observed by Ling in 2017, DL solutions have become predominant in analysis
for semantic understanding, outperforming traditional machine vision solutions for object
detection, semantic segmentation, face recognition, and visual tracking [69]. These changes
have been incremental, with catalyst works such as ‘LeNet’ in 1998 by LeCun et al. [70]
and ‘Alex Net’ by Krizhevsky et al. in 2012 [71].

Throughout this literature review, only a handful of ML references were encountered,
using ML for image- and post-processing. This includes a 2004 paper in stereo-vision by
Sinz et al., which demonstrated that Gaussian processes could be used to learn mappings
from image to spatial coordinates [72]. Sinz et al. claim their proposed approach could lead
to higher depth accuracies and faster operation than classical calibration methods. In terms
of ACBV, Dai and Chung implement ML for object recognition, detecting and recognizing
primitive shapes used to create codewords and correspondences [43, 73]. Their work would
progress to be demonstrated as a successful touchscreen interface [74, 75]. More recently
in 2016, Fanello et al. proposed treating the depth triangulation correspondence problem
as a classification-regression task which could be solved by cascading random forests [56].
Improving on the computationally expensive and localized matching approaches, Fanello et
al. demonstrate a 375Hz depth camera based on IR dot patterns with lower error and noise
characteristics than commercially available sensors.

Aside from these works, many commercial depth-sensing products targeting industry
mention the keywords ML and DL throughout their product listings. Of those perused, all
implemented ML and DL in post-processing or image analysis, suggesting no application
of ML or DL towards 3D surface imaging techniques. This observation is mirrored in con-
sumer products, where few references were found. Of tangible significance, the iPhone X
was noted to use ACBV to project 30,000 invisible dots to create depth maps and infrared
images of a user’s face [11]. Using this information, the iPhone X’s neural engine is capable
of transforming the depth maps and infrared images to compare representations against en-
rolled facial data. No further specification on the system could be found and it is presumable
that ML and DL are solely applied in post-processing through the neural engine.

To conclude, at this time there are no known works with pertinence to the designing,
encoding and/or decoding of patterns for ACBV sensors using ML or DL. As will be dis-
cussed in the following section, there is potential for significant innovation in the field of
ACBV. It is hoped that ML and DL may assist in making these changes a reality.

4 Machine & Deep Learning Potential

Though few works could be found with relation to correspondence based vision, it is
important to recognize the potential and versatility offered by ML and DL models. Though
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often designed and demonstrated around a singular problem, models can offer predictive
capacities far beyond the original scope. As an example, Convolutional Neural Networks
(CNNs) gained popularity after LeCun et al. demonstrated their capacity to recognize 28x28
images of handwritten digits from the MNIST database [70], but today CNNs are used
for a plethora of different application, including forecasting financial markets. This con-
cept was successfully demonstrated by Sezer and Ozbayoglu [76] in 2018 and extended by
Maratkhan et al. in 2019 to increase annualized returns from 13% to 29.54% on DOW-30
stocks [77]. To continue this example, alternative approaches to financial analysis using
ML and DL have been tried with almost every model imaginable, including random forests
[78], Reinforced Learning (RL) [79], and Long Short-Term Memory (LSTM) [80].

As demonstrated through DNNs designed for image classification, DNNs have the ca-
pacity to generalize beyond human reasoning. This concept is well illustrated by attempts
to visualize incremental steps in DNN models for image classification, where the first layers
appear humanoid in approach, but looses coherence and rational at deeper layers. Though
the logic in operation is indiscernible, it is known that deeper DNN models have increased
capacity for generalization, handling input with varied resolutions, object sizes, illumina-
tion, and coloring. Models created by He et al. and Howard et al. demonstrate these
capacities, with Howard et al. adding special hyper-parameters to control the trade-off be-
tween latency and accuracy [81][82]. That being said, the larger the network, the greater the
computational expense, and significant research has been made in making networks more
efficient. This includes works by Iandola et al. to create SqueezeNet, a replica of AlexNet
with 50x fewer parameters and sub 0.5MB model size [83], and GoogleNet by Szegedy et
al., which targeted increased model depth and width without incurring additional computa-
tional expense [84]. Similar approaches have been taken in object detection, where unified
detection and recognition models (without transfer of learning) can be optimized end-to-
end to increase model performance. This was demonstrated in works such as YOLO by
Redmon et al. [85].

To this avail, ML and DL offer an interesting potential towards a unified ACBV so-
lution. ACBV and modulated approaches discussed in Sections 2.2 and 2.3 are designed
pragmatically through human understanding and intuition of projection, scene illumination,
and capture. Furthermore, all discussed sensors exhibit scene invariant operation, offering
no dynamic sensing or control over illumination, object edges, or imperceptibility, leaving
a significant gap between the current state-of-the-art and theoretical optimal. It is therefore
possimpible that ML and DL may offer the toolset necessary to bridge this theoretical gap,
creating a unified solution with capacities beyond procedural and rule-based human con-
ceived model. Through a hybrid Generative Adversarial Network (GAN) and Autoencoder
model, a new approach to ACBV with dynamic projection and maximized throughout in
various operating conditions may be possible, offering the next echelon towards the theo-
retical optimal.
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5 Conclusion

In this literature review, an amalgamation of research and commercial products sur-
rounding 3D surface imaging has been presented and critiqued. Through these works, many
industrial and consumer systems gain insight into the physical world, obtaining the capac-
ity for qualitative measurement and intelligent interaction for applications from self-driving
cars to biometric security on personal devices. Though these solution may not be accessible
or practical for all applications, the summarized works demonstrate an evolving field which
is striving to provide visual acclimation for a world growing in its requirement.

As the paradigm of machine vision changes, this work suggests an evolution in 3D
surface imaging towards unified machine and deep learning solutions. Offering the poten-
tial for a new generation of reliable and versatile designs, it is anticipated that future works
will explore adaptive, abstract and alternative designs operational in diverse theaters of op-
eration. These changes will innovate on the current static encoding and decoding pipelines
of structured light sensing, offering dynamic operation to meet the growing requirements
for precision and quality.

To conclude, this work summarized research with pertinence to 3D surface sensing
using structured light (SL). Literature included forerunner works and research in structured
light sensing, and introduced the potential offered by machine learning and deep neural
network (DNN) models towards integrated and unified DNN & SL solutions.
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